Senin, 06 Juli 2020

Pengertian Geometri


A. Pengertian Geometri

 Geometri, berasal dari bahasa Yunani, geo artinya bumi dan metria artinya pengukuran. Sehingga secara harfiah, geometri berarti ilmu pengukuran bumi. Pengertian tersebut muncul, karena pada awal penemuannya, geometri sebagian besar dimulai dari masalah praktis berupa pengukuran segala sesuatu yang ada di bumi untuk keperluan pertanian pada jaman itu (Babylonia dan Mesir Kuno).

 https://allaboutmatematika.files.wordpress.com/2015/08/piramida-sosial-mesir.jpg

B. Pengertian Titik, Garis, dan Bidang

 Titik tidak didefinisikan. Titik tidak mempuyai panjang atau lebar, tetapi menentukan letak. Titik digambarkan dengan noktah ' . ' dan diberi nama dengan huruf kapital.

How many points does it take to define… – Sarcastic Resonance



Garis tidak didefinisikan. Garis merupakan kumpulan titik-titik, melalui dua buah titik hanya ada satu garis. Garis mempunyai panjang, tetapi tidak mempunyai lebar. Garis digambarkan dengan dan diberi nama dengan huruf kecil atau dua huruf kapital.
:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAARsAAACyCAMAAABFl5uBAAABIFBMVEX///9uksPCz+Pa4e1LgLzw8fY9eLg0e7tLfrv///719/r7/P08eLjc5O/i5/H5+vxjjMHn7PTO2enx9Pnp7/WRrNSjuNm4yODL1+iKps6pvNnU3uzO2eq0xt95l8W7x918oNMASaQ6ccNXiMBymtVbhtCFoc2ftdcsZLUAOqFGdMVVg8d0l8xqj8c1cb0AT6oAZb89Xa0AAJCBptxkluNpldl5oedOis2JqNdThNBijs9DfMNYgcxMdcMAXLlAarsybLUAWKwnU6paebcPRJwAN5sAPp4AL5sAJJUIHI8ITq1og8QpbMMTabMuabUAQ6xScbVCUacAKZFCVag1QKAbPJQAVbYOVaOFk8KTosxkdbdVZa0AUbghM6MAHZtqhbt01vHhAAAQkklEQVR4nO2dDX+bNhPABTh+bMmAZRAYCNixE0FjIM4ap6lZHL8kTpelbtat7datzff/Fo+Ek+6lbdKsGTgb//xiY4wRnO+kk3Q6A1BQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUHC/QJz3FawsyN6U876GVQU/3rNzKFZz7SWu20Q5lP9FiIP9TZh9sdKTvf39/b2tvb29QXtFrRoebA16jezLVWV7sD+w5AYZ7O8daNlfwBcg9ba2nvp5lIyTwVOXGVd7bzBczRrPj7tb30Z5KDWOt7ZdgECrs9WTcij/VtTeUEwOk2YOReP42w6XTbNzGK6kTYmvfTUMAkvNvmgcHPZdfgmjRMy+9NtB3sgB9s5uKQejwsFR38dyU4jNlWzE5amAgDyZBjl8c3iyG4yPjoIFkVZSNvapjaBW3phboJp12XgynQq/XAY7k6m1gsLBs+Odk5P59PhkrGdf+M7xI1bf4Pp8emplXvqtiMcXHqM+ffUye6PCG69ObdZO4en85Szz0m9Dpc8MFUKoz05eepmXjo9fveSyAbOX362ebPBiunRsyMZG9kaFd16dpL1cenJymXXht0LOZkuJOIvdMzfr0lldPGeyqYJoPlk1B0cT46NeQ+denx4dHUVSxr1xHAQj3pGTx1Mrh4GAm4Ak7nQ6yfe8m+ckbPPQzrIlVSW7c3jY8017GFgr1mWoQtsiDKqwFwrfpK0sy5eS8yVBz1wxrcmdNdtIsZ1CMgUF/0Uyc/9g9r23r0KVLSGrsvSur6xg1/szIIl0n2cmG6007hqrOX7+MbLfLVdqAlzLBqVbKZe7xopOS/0JTCrlSqlUqfwvKyoVVlqtZKx6vYPc58/5pWZOqfK8tmqdzL+AdFcol7naMN3JiFQ2tYonrlhP6hPoplArl8qCImVDo1sp1Wr0AUiGo5nd8TizsT+tWx4L4sPpSKliN8M2XLjvwBI+tvtJ7uf0WmYzv7B57/Oobrf+KborOIOROca4XKvVypz0iT3w19nVEyuMpnyah+BfFuSJRJSrLU1PWdPXtMxnsleSKtkzlm2fSjYfMzY3Hx8Q9+E4Cv8g8ub+47V0Cxmbg/39QftgsLc/IIVwALD39ofrV9u4PRgQDSntwf5WHiFpaLUGp/Rwa/DUR8v6BVlbW1xhxN5gy8zuEiRZlrnjprnuSglH7FW2nkZXYx4q/fYpl40SbWUYL+cONzcF3h7IT4YrZMlVlSRGchhfGZBKtw+5bNai7V52Dg40BkPMFQY1ncwK/QJwEsHo/JwsXyF61CFMu524n2V1IybD1JY0R+Q9MBPIdhrVrrhunoN49sQF/mR3vOynqXQURL5BKpX1Wz53r4hxj5evCEEPyVEQiZVFzNR2vSv0hvn55+rlkQykxXRnqSYq3dldLCZnk/ovYoa1ohgkvDTdOJoh3Q/KXTd8IQF5TGTygmR3GX/B2aAQaNHOo2W3W6UbU2+96S825hMjO+GI03Kqt8ruDAEn2LGB9U5CJKiMy5N6brUzOa1TSmfHx0epYSN6cmypAIm7x/OL7LRZfMVsGilA/uFCBc4PC4zoN5L2dqJV1fzadLw4/undu3c/Hb+ap+4Moi/nTJGqyDp5Nc2uNhaPx0xfyrry4wV7/ukSpLKZncrsisy8Khz3vYcZzmx+4nGtvpINAK3TV7vZtafiblmFdAHkoxnTm90IAOtFAxjzsOHQek5j4zA6XXq/5Pj4gk+XIjrfSGXT/Ol4llHzWQVi+XXgdUch7r4etcX6676lf/9beR22X3f6lXzUpgoai7Pl8ERzMp3wmE5Ed6bp8hV3epbdgkvHbbXcVujqdqvVcth/a01suRJQ7QNbyz7uH3DR6GEQLCfXYTcIeL9B89izo6L13utMgxg5KIclRZ9FHG5vd0LCpaPXtw8PI9FsJ9uHnSSK4tjI9dKq1095DbGRTq/XS9I+pVximx3SjnucJCKNleoPZw/mQwOyzKtelW9IOpaXaP9xydxIMVpcUFBQUFBQUFBQcD8oDyRiM3uqgDzJJQb6Q/ziCvd7lMH+QQ5dVhxuXtFur2h8ehXYT/eHyu0H3jdrB5v7+/ubB48H+/tbqxV58AE12kozX2VO1RnuD2wVipuDQR5fzhfQiJOtp2EeJePh3hb7UpC/NRiuVOjBNYjEVnKY5LHUCw+//ZYbU6O31fu68qvgHxnJkuNIiTr9PJJD4t7hoYuqPK8BuWl4XtM0nddH6vrnpnmQjv8JN8R+7VatIIhycHFw76jDKzojuDGLHiIHBx6fgsOJr35SO6BPw/YdMzgqzq2zJVoUKEDc3V3kYPA4CQLPtkm5e/Pk4/rmsh1TxU9bnkosSXz6kebfaGR4+Bk5/4HG1OPJpabTHKZycHkaLCYvXiwqvnzTncAwWeqVqnHzQUBPlRwpV7runJsA1HlSFLw8TlsuI4YaQJhpR5qsBUCZ7+TrrzEEQIpv9akQ3fBsw+jO55c5pNwqb0wMRaSTjdPdm8IdtCjmTbxGEoLEbojtcolpuUTrlWX6O6czlLhYdL9eIhrQDKFbIaJil325HvualYQ6gK5QCmXI9mEraWtrtBPe1lPC4+M30+n0zfHJj9lnXMXj+ZS34cb0eB7dELzD7J7rg04Corq9HjHswAay0FCtIK0JEBklpgo0y1ZN9g6JFGattOmP69SMYurSiQhsaw2PQ8UPPMukgSMLY4HcMoHvvrwUGe6bk5PsM67i8ckxn7DWL09Oboohgpe7qWuImWwA3bGAs7CBV6ZWfbKsZKC92LCAOfaoNxHw4hcALmc60N4GTWBtEGBORL1Wp3Q8VkAwNoGx2wDN25M1XZ4uPWLvdH6Z+WT/tWwA+W5+UywI/H6aykaZMNn8fCKCxhsbLKjTcJzrTzmzb9xfZo2G08D67ltNH7PbWvv1AiJv6jDZNBuPTHa4pKLprxj4bJ84uS3fT+PsKnZHPLsOJMwQZtDT9Is3TjfIDR0q+JbLRlzXd7hs2M05b2z1TRrbl87rEnYSPL28fMsrEA00S+UyV4q1X39G6OdfNa434imvMiAEEwqB/wOTzfQW2UBvlCzz42pJMKH3cLt3grVTabwM9M7GN7kQzKaYhdRNOGES/PktTG1qFjSRZtusIUaUrzQdE2PHUNUmu3eVlnkQtHbxC3tvBpmONPGZh5FsNcCEVR0GUwgxEPWbHBzp4PAwISbXSy3aPkyMjDt8SnIUUEnT3UVwYz9cjCdmk84cezR0mklsguaoKzeDJIx4Sqwqq4rthh3pOArCsM60X6kHPSIhOxg21DBwgT2iOpkMw6695o4iB5DfLK0xiW7wxasq/a3P+E0ECDgjtvXautUdukc0P9re3u4k4bB/86oDlXqUUoE6rKq1iedRrel5NmiGkbFshRtelDY6Ch1SmTnJdeJ6ybBJPc+H7HhohkITGlEoAsxPgezQa2ihdaMm4OVSdt56wnQr06g03O0NOb3I/qL+ysffMvroPbYHRW1+umby1xUwqzlC9GnQ1dpB/Usv+st0eu2Jv6ZB7Lf1IsjkI8y2ZxHLvxcb+LcJF+lScx3fU0iipmtqbhKC+o1N6d+g+ofHrzyTbndLXUvORzaaWy+V6KqGLGJaK/McRjn8tgdvnZeFZ7eo8i4gv1YpVUqlmpDH0jB3zPMElco5hbTfgtK9zidVF7LnquzS87tOAanLuVCowg/m+FGlgL/WVJ3adfqr8jIJSPn6uXaVEeSP1D7kCbnevnr48Fy7/uzyyNrvR/3hvB8+f1127Y6Z9hUvPGAeqxO1ww8eNZKd30+C1yEgna/8KRXpL7LJmCu9qd1x7Eh1e099BCDZPvhQFUjx730yvcc6pfLXZmbSu8vrK1UMMXvq5Subuut8uCxEsVgF62nHQJV5z0js8648UnjSX7nf4orEnQO47AjJEKzdcQqsClxeF1dKY5rHgsJmmj2vVOvetXDHcvqJzGrLdXaSbm1B1yThiIqw4dVjj7W9R1HL7fL5SLMyXhDVERZY/N/irs2hape48Xv5rGB208KFO09qOp4q7kQ6FCQgCrpqv4hMIaC2+MIEZEeVaOD5rrCQge1B6D+ymjQgpBF4d/7+G75FcsvLLRkWcdfu7MU6go7oIwo9Sb3g9vjzVBbfSaBxgcV6AIH8iO0kUxlPmEGh2a7eelTX0fjusgEox2Woy6Qfd3bKHQEDPDs1PUV5xr1WdyqK30kAmpZVn0LgPGP1jfWTIp5qAAGyIbW+MQBc/A3ZVKt5djf/VuGNEjPD5kbQxfJ7rjfNsiO+c4BebmkCl80pl80PivheYbIxx7jFJAif/w3ZPEDcSZPf9M4FxhPuVPseMs8cXAlRczzWoHPW0gAJFGcnZOKgFmidYQATb5XWC/5TKFGf3zSghxgY55HpejIQR5QM45AKHdqU+6EvRueGTs7bpi2sKe2+rWlxIv4HhNOghPK2DVOmDm6b8sFiHBr6ekiUZmiq8IAorkUIhn6b+joQLWLJOrGM/0A8LFLVZfuRTk9BuIwFQOlrlA5/q1fHIMh3L7fZQ54XnSHVT25n0Krk2nKtONeygZ/Ph79iyciyAtq2bfDZceQOP9MLZDXgwZ0TCyL88OWp0d5eKhTkPvlzAMG1qcGDIdkcNv607/dYzY+jNtNX6+32v8D50trbyz5rlU8CIPagLVs/qC3vzojXgZikoQlXK9Q1LW0E2PuQHarqVzvR1b41BKqkv6Kh+XdCb5+nspGNqAlkuyevhxEfHZHa3YN0FrndMRBmLgYSha4Pee6bMCJNRzZDW2pHjmJFJms/XSGyke5GLqZDF8jtjv8v+EUlPRylsvHjkYlIPPLrpRFlLlfXMOKIq4LZXxCNuQxu3SV9H0G/YreDpE4r/brQDQSh20l04AsuHZlmMqJeqRPzH0qr1B/Kr3l8Hi06S2Wj+Tsi0GlQazamEdC+r9h2MueWhIzJWcUBOBBcfzLG4gsLOEFdgfbO2JaDwMLdMW5MqGudVXQ7eG7jXqBp9IWpPXzvS7t8tKxvjHkLIOtESNNHidOuUPcEPkKtAqn+aNcxNup1waN6670Hm49spk+nMx1Pd2V0uavQicDeJMjcCKA+m+jAep9H4tP7Rr98xmQjisA/aQHVem8C590laD1Lh7x5jK/lMPk988l3aUsP9cs3wozPFZjfWAAfzzTt8kf58oRXyKpqPvOAfsFl882/oS7WIqY32owwvREBIu8lpjcCaM5nGkC2wW54waTUembYzywINEsEmrG45C1Z670P8IYAYX0XW6c2AmuhIj4zANMbjevNSmUV+nvI0cjWjVEL0YmPNO9MZLXJJVbDs4hUxqyhgovvJZ3Gir4YhSQWNJ5GLgibKrDPKMRBBWvRUdMJAkoDCo0douq9oAGsiddeyQnMu6CX4qT2/DyWSJD0bbpIAteM45IOaT8I+d2h8DxI12cow/45QUA3KvWw02+TOFlQN46j5mGcOErSjw1gL9g+pxfHjnveXclVUncCyRL7c5oqD3rTMXuhaZKkqAA6V7/eqknO0lXRHVY1K+ETUYPS5lNTliTMD9XY5yHAjpKmPJYwlGUJQuc/MHzyF6rmU7+KVLz5+MFbzP0jPx5sHmw+OXj4jt0/gCbahu0UYz4FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFD4P/A0dT63eIKXtvAAAAAElFTkSuQmCC 
Bidang (bangun datar) tidak didefinisikan. Bidang merupakan kumpulan garis-garis, yang mempunyai panjang dan lebar serta berada pada dimensi dua (D2).
 
Ruang (bangun ruang) tidak didefinisikan. Ruang merupakan kumpulan bidang-bidang, yang mempunyai panjang, lebar, dan tinggi serta berada pada dimensi tiga (D3).
Geometry 3 Dimensional Shapes - Lessons - Tes Teach



Tidak ada komentar:

Posting Komentar